A Simple Neural Network Approach to Software Cost Estimation

نویسندگان

  • Rachna Soni
  • Anupama Kaushik
  • A. K. Soni
چکیده

The effort invested in a software project is one of the most challenging task and most analyzed variables in recent years in the process of project management. Software cost estimation predicts the amount of effort and development time required to build a software system. It is one of the most critical tasks and it helps the software industries to effectively manage their software development process. There are a number of cost estimation models. Each of these models have their own pros and cons in estimating the development cost and effort. This paper investigates the use of Back-Propagation neural networks for software cost estimation. The model is designed in such a manner that accommodates the widely used COCOMO model and improves its performance. It deals effectively with imprecise and uncertain input and enhances the reliability of software cost estimates. The model is tested using three publicly available software development datasets. The test results from the trained neural network are compared with that of the COCOMO model. From the experimental results, it was concluded that using the proposed neural network model the accuracy of cost estimation can be improved and the estimated cost can be very close to the actual cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Networks with Limited Data to Estimate Manufacturing Cost

Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...

متن کامل

A New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS

The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...

متن کامل

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

A Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects

Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...

متن کامل

A Proposed Framework for Software Effort Estimation Using the Combinational Approach of Fuzzy Logic and Neural Networks

Software effort and cost estimation has turned out to be the major challenge in IT industries. In this paper, different software effort and cost estimation techniques like algorithmic methods, expert judgment, analogy based estimation and soft computing methods and their various aspects are discussed. Software effort estimation is followed by cost assessment that is useful for both customers an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013